

Higher School of Economics

(National Research University)

Faculty of Computer Science

Department of Software Engineering
Master Thesis

Transparent Voting Platform Based on

Permissioned Blockchain

Supervisor:

Associate professor

Nikolay Kazantsev

Academic Consultant:

Ilya Eriklintsev

Presented by:

Nazim Faour

Contents
ABSTRACT ... - 1 -

Chapter 1 ... - 2 -

Introduction and Literature Review ... - 2 -

1.1 Introduction ... - 2 -

1.2 Literature Review ... - 4 -

1.3 Challenges and Risks: ... - 7 -

Chapter 2 ... - 8 -

State of the Art and Current Research ... - 8 -

2.1 Votebook (New York University): ... - 9 -

2.2 Open Vote Network (New Castle University): ... - 11 -

2.3 The proposal of the University of Maryland: ... - 13 -

2.4 The Voting under Unconditional Integrity and Privacy Concordia University: - 15 -

Chapter 3 ... - 16 -

End to End Voting Systems.. - 16 -

3.1 What should be included to keep voter privacy ... - 16 -

3.2 The verifiability in the end to end voting systems has three main steps - 17 -

Chapter 4 ... - 18 -

General characteristics of a voting system ... - 18 -

4.1 Integrity: .. - 18 -

4.2 Eligibility: .. - 18 -

4.3 Availability: ... - 18 -

4.4 Fairness: ... - 18 -

4.5 The Anonymity with Secrecy of the Election: .. - 19 -

4.6 Correctness .. - 19 -

4.7 Verifying Results: ... - 19 -

4.8 Robustness: .. - 19 -

4.9 The Concern of Coercion: .. - 19 -

Chapter 5 ... - 20 -

The Cryptographic in Voting Systems .. - 20 -

5.1 Cryptography Public Key .. - 20 -

5.2 The Mix Net Property... - 21 -

5.3 Zero Knowledge Proof.. - 22 -

5.4 Digital Signatures .. - 24 -

Chapter 6 ... - 26 -

The proposal of a Voting System Architecture .. - 26 -

6.1 Proposal Aim: .. - 26 -

6.3 System challenges and requirements: ... - 27 -

6.4 The main elements of a blockchain-based voting system: ... - 28 -

6.5 Replace the coin with a vote: ... - 29 -

6.6 How to handle double voting: .. - 29 -

6.7 How does the voting system works .. - 29 -

6.8 Voting and creating Poll as Transactions: .. - 30 -

6.9 Transactions Types: .. - 30 -

6.10 Encryption: .. - 31 -

6.11 Voter use case diagram: ... - 32 -

6.12 Sequence diagram for the voting system: ... - 32 -

Chapter 7 ... - 34 -

Conclusion and Future Work .. - 34 -

- 1 -

ABSTRACT
Since 2004, different research was handling the challenges in the

centralized voting systems, e-voting protocols and recently the

decentralized voting. So electronic voting puts forward some difficulties

regarding the voter anonymity, the secure casting of the votes and to

prevent the voting process from frauding. The Decentralized property of

the technology called "blockchain" could have the solution for many of the

challenges in voting research area and brings a new secure mechanism of

safe and transparent voting. In this paper, a broad comparison between

ongoing voting systems has studied by analyzing their structure and the

drawbacks that should consider in future to improve the whole election

process from keeping the privacy of the voter, casting a vote with the

possibility to check if it was counted correctly to publishing the results.

The result of the paper will give a new approach to extend the target of the

election from small scale to large scale despite the fact of Ethereum

limitation which can cast on the blockchain just five votes per minute. The

primary challenge is to find an answer for this question: "How to balance

between voter privacy and transparency without breaking the important

rule where the voter can proof for a specific candidate that he voted for him

in a bribe situation?".

- 2 -

Table 1.1 comparing blockchain vs traditional ledger

Chapter 1

Introduction and Literature Review

1.1 Introduction
The protection of integrity of digital part of information requires the

blockchain technology which is a decentralized and distributed database in

a peer to peer network. In blockchain system the data is shared between all

the nodes of the p2p network. The data is stored with considering the

maximum size and the verification by using a specific technique for

hashing. This hashing technique will contain a specific number of zeros at

the beginning which represent how many participants does the system has

in the network. Transactions are the real data in a blockchain system which

are totally public. If the user tries to make a transaction (sending, receiving

bitcoins or casting a vote), the system will verify the transaction before

adding it to the blockchain. So this verification will prevent the double

spending or the fault votes.

- 3 -

In another words, the blockchain can be defined as a list or a decentralized

ledger of all transactions that are procced in a p2p network. Blockchain

technology is used in Bitcoin and the other current cryptocurrencies.

 Table 2.2 bitcoin and blockchain

- 4 -

In any election, Threats are always exist even if the process of election is

paper traditional one or electronic one (e-voting) due to the importance of

the results of an election and the high level of stakes for the one who will

win the election.

On the last decade, a lot of election results has been fraud. The fraud

includes some attacks such as double voting, buying the vote and using the

blank ballots. So the question is," how to be sure about the results of the

election that it's correct and how to find out if it's wrong?".

In paper voting, there is always a trusted party which is responsible of

counting the votes and the voters must rely on that. in this type of elections

,the whole process of verifiability and tallying performed only by the

trusted party so the voters cannot find a way to check and verify the

correctness of the final results.

In “end to end voting verifiable systems”, this whole dependency on a

trusted party is reduced in order to give the right to the voter to check and

verify the results if it's correct or not.

1.2 Literature Review
“Permissioned Blockchain" means that nodes must have former permission

from a centric authority in order to make any changes to the ledger.

Using Blockchain as a distributed database for p2p voting system will give

transparency due to a reason that the network of nodes will be public and

it can take a huge amount of the total computing power in order to modify

or change some piece of information which is stored on the blockchain. In

Addition, this technology will allow the data to be transparent and not

susceptible to corruption. The fact about that blockchain does not have a

failure of single point, will make it most suitable for a voting system. This

- 5 -

system will be able to verify the quality for each vote to be totally authentic

so any election will be secure and transparent.

The blockchain can give an exceptionally large and scalable solution to the

current voting methods with increasing the security and fraud-proof digital

voting.

There are many advantages for using a blockchain, which make the

blockchain a secure replacement to the other databases.

x High Availability: many nodes totally distributed and storing the

whole database.

x Integrity and Verifiability: each chain is verified and then attached

to the blockchain. So any altering to some block will effect the whole

chain and every block should be recalculated which sound

impossible.

x Easy to define one common starting point, where to store the data,

always attached it to the last block in the longest chain.

All previous advantages lead to build a voting system with blockchain

technology.

Selected Hits Keyword N

2017 2640 Decentralized Database 1

2017 1170 Blockchain Technology 2

2017 580 Blockchain bitcoin 3

2016-2017 3510 End to end verifiable voting systems 4

2016-2017 1310 E-voting 5

2016-2017 418 Voting with blockchain 6

Table 1.3 Sources for the research idea

- 6 -

Statement Research area Name of

authors

N

"Requiring users to manage cryptographic keys

has been shown through usability experiments

to be difficult"

End-to-End Verifiable

Voting Systems.

Bitcoin and Blockchain

Dr.

Jeremy

Clark

1

“If voters generate or are provided

cryptographic keys to use in the voting process,

hackers will concentrate on compromising

these keys through interception or malware.”

End-to-End Verifiable

Voting Systems.

Bitcoin and Blockchain.

Dr.

Jeremy

Clark

2

“A [sic] voting system that uses a blockchain as
a public ledger but requires voters to show up
and vote in person is an excellent option for
elections today, but reaching beyond that is too
risky.”

End-to-End Verifiable

Voting Systems.

Bitcoin and Blockchain.

Dr.

Jeremy

Clark

3

“end to end verifiable voting systems have the

merit of allowing a voter to verify if their vote is

correctly recorded and correctly included into

the tallying process—and if ballots are missing

in transit or modified, it can be detected by

voters.”

co-lead of the Secure

& Resilient Systems

group at Newcastle

University’s School of

Computing Science

Dr. Feng

Hao

4

"Everyone can cast their encrypted vote. And

then at the end of the election, once all the

votes have been cast, anyone, including

observers, can simply add the encrypted votes

together. It will cancel out all the random

factors in the encryption and it will just reveal

the final tally."

Voting with blockchain Patrick

McCorry

5

Table 1.4 Review of authors

Creating a voting system over blockchain provides a platform which is

entirely trusted to be able to have data verification process in real time and

to have automated execution of specific voting protocols.

- 7 -

1.3 Challenges and Risks:

x Each technology has its difficulties and the same logic implements

on blockchain, it's normal to have some difficulties at the beginning

of the blockchain evaluation, for example, the process of verification

and the exact speed of each transaction.

x Different issues in the field of cyber security still exist and those

issues should be solved in order to bring the blockchain technology

to the trust in the real world where everyone will trust the system to

put their data into it.

x The action and process of integrating concerns, Blockchain

applications offer many solutions that need big and important

changes or complete changing of the current systems. So To make

this changing step, companies must devise a strategy for the

transition.

x Adoption for the new system, in order to implement a blockchain

concept the whole existing system must be transferred into

decentralized p2p network.

x Blockchain brings a huge savings in the time cost and transactions

cost but on the other side the initial step can require a high costs.

- 8 -

Chapter 2

State of the Art and Current Research

An important challenge in cybersecurity field was hold by the Economist
and Kaspersky Lab in September 2016 and 20 worldwide universities
participated in this challenge. The challenge was on how to have a secure
digital voting with the use of blockchain technology [20].

The first voting system which based on cryptographic and mix protocol

was proposed by Chaum [26]. As a centralized voting in remotely

condition, Some systems exist such as Civitas [27], DRE-i [28], Adder [29]

and Helios [30]. Another voting systems in the condition of polling station

are MarkPledge [31], Prˆet `a Voter [32], Votegrity [33], DRE-ip [34],

STAR-vote [35] and Scantegrity [36]. For decentralized voting systems,

Groth [37] and Kiayias-Yung [38]. The only systems without tallying

authority are DRE-ip and DRE-i.

In this chapter, different research in the area of voting will be introduced.

 Figure 2.1 e-voting systems.

- 9 -

2.1 Votebook (New York University):
The votebook solution won the competition with the use of blockchain

technology as a "permission blockchain" and without the use of the

mechanism proof of work (PoW). Their proposal allows a centralized

authority to be responsible for the way that the encryption keys are

distributed on the network nodes and due to this reason was the need to use

a permission blockchain. Each node in the network is a voting machine.

Every voting machine will generate “public keys” and “private keys”.

“Private Key” will be stored under a secure matter, and the “public key”

will be sent to a centralized authority.

The block that is proposed to be in the network will contain three parts:

1) Unique identifier for the node

2) Time stamp by using a time-based protocol

3) Validation process: A hash of the previous block, a set of voters with

their vote and a digital signature.

Votbook has different considerations in the design process of the voting

system:

1. The ability for each voter to check if his/her vote has been

counted in a correct way.

2. No possibility for coerce in the electronic voting system.

3. The voting system should be able to handle the publishing of

results or the hiding of rounds results as required.

4. The voting system must deal with the empty votes and not

make those abstinence votes to be used in the counting

process.

5. The voting system must be audible.

- 10 -

 Figure 5.1 Block Structure in the network.

 Figure 2.2 the Process of voting in Votebook.

Some Challenges that should be solved in the Votebook proposal:

1) The system does not solve threats that may face electronic voting.

2) Individual voting machines can still be tampered with or just denied

service.

- 11 -

3) Not clear enough which hashing algorithm will the system use to

hash the voter Id and the Ballot Id, how the private and public keys

will be generated.

4) How the system will face the Sybil Attacks.

5) How the system will verify identity without sacrificing anonymity.

2.2 Open Vote Network (New Castle University):
The Newcastle University team proposes a decentralized voting system

where the trusted authorities are removed from the process of the election.

The proposal focused on the possibility to have electronic voting protocols

with the use of Ethereum blockchain as a self-enforcing system.

The votes are cast on the distributed peer to peer network in multi rounds,

and the voters verify the last tally but in a private way without getting any

information about the other votes. This scenario is suitable just in the

elections as small scale due to the fact of multi interaction rounds.

OV-net has many properties [22] :

1) Decentralized with a voting scheme of two rounds [23].

2) The tallying process gave the privilege to each voter to tall votes

which called "self-tallying."

3) Implementing a proof of concept solution to work with Ethereum

blockchain.

4) Two smart contracts: one is voting contract and the other

cryptography contract.

5) Three html pages: election administrator, voter and observer.

6) Five stages of elections: setup, signup, commit, vote and tally.

- 12 -

 Figure 2.3 voting Rounds

In the setup stage, the admin is responsible for checking the authentication

of voters with putting the whitelist of eligible voters and then decide the

timing for the next steps with attaching the details such as the voting

question and the registration fees.

The voters read the voting question and then decide to register by deposit

on Ethereum in the signing up step.

There is an optional step which is commit step to ensure that the voters are

commitment to their choice by sending their hash of the data of second

round on Ethereum.

The next step is casting a vote and when the final vote is casted the admin

notifies the blockchain Ethereum to calculate the tally.

Finally the results are published on the blockchain in the last step.

One of the Challenges in the OV-net was By Including an Elliptic Curve

cryptography library, performing the process of computation becoming

massive to store it on the Ethereum Blockchain due to the reason that

solidity language does not support the Elliptic Curve cryptography.

- 13 -

2.3 The proposal of the University of Maryland:
Their proposal used the Ethereum blockchain to record the votes with the

use of ZKP and Merkle tree as cryptographic primitives.

The Merkle tree proves to the voter that his vote included in the counting

process after the end of the elections.

The ZKP proves the correctness of the tally process.

In their system, each voting machine represents a voter with a server that

is responsible for handling decryption and tallying process.

The voter client here encrypts the vote with the “public key” of a

centralized authority and then this authority is handling the decryption and

tallying process in a correct and verifiable way. The proposal did not use a

cryptographically approach to the cast of the vote but in fact they used a

random number as a receipt.

They implement their idea by using Hawk to run the smart contract,

manager and user code. The smart contract in their proposal will be tall

every vote with spending coins in the voting process while choosing the

candidate [24].

- 14 -

 Figure 2.4 the voting proposal.

There is no guarantee if the vote cast correctly or was a part of the process

of tallying even if the voter found his voteID in the blockchain. Also, there

is no possibility to have a checking way to find if the vote was cast as

wanted to be. Each voter will not have the right to find if his vote cast to

his choice of candidate due to the reason of the encryption of candidate

choices with the use of DRE.

- 15 -

2.4 The Voting under Unconditional Integrity and Privacy
Concordia University:
They introduce a system with different properties of security and give a
new vision how there are various interdependent combinations of security
issues. Their system is depending on Eperio, which will let the voters cast
ballots in paper-based and then leave without thinking or involving in the
process of tallying [25].
One of the drawbacks is removing the possibility for the voter to be
involved in the process of tallying so the voters must trust the honesty of
the shareholders.

- 16 -

Chapter 3

End to End Voting Systems
In 1981, David Chaum presented his research idea about secure voting by

using public key cryptography. He gave a technique which depend on the

cryptography public key to make the participants identity unknown and

hidden for the public communication. This technique it's not secure enough

to be implemented in real world elections [2]. Chaum technique became

used in different research areas but it did not have a chance to be tested in

real world projects related to voting and elections [3].

The life cycle of the vote can be described in the following steps in order

for the voter to be sure that if any breakdown or tampering happened in the

system the voter will be able to discover that in those steps:

3.1 What should be included to keep voter privacy

x The secret issues for a ballot, this method provides anonymity for

the voter choice in order to protect his privacy. So the system must

not give any information related to the choice of the voter in casting

stage.

x Receipt Freeness, it's about how the voting system can avoid giving

details to the voter where he/she can use it in bribery way to a third

party to prove that he/she voted as needed [7] [8].

x Coercion Resistance, this definition explains how to protect the

voter and give him a secure environment to cast his vote even if there

is a dealing with a specific coercer [1].

- 17 -

So this steps can be summarized as follows, The voter confirms that his

vote has been encrypted correctly by the system. The voter confirms that

his vote has been recorded correctly by tracking it with his/her receipt. The

voting system will publish the cryptographic proofs of the correctness of

the operation to ensure results integrity [1].

3.2 The verifiability in the end to end voting systems has
three main steps

x Cast the vote as planned, in this step the one who voted can have the

right to verify that his/her choice of the candidate on the ballot was

correctly marked in the voting system.

x Record the vote as casted, in this step the voter can check if the

voting system has recorded his/her vote correctly.

x The vote Tallied as it was recorded, In this step the voter can check

if the voting system count his/her vote as recorded.

- 18 -

Chapter 4

General characteristics of a voting system
In a good voting system, these characteristics must be considered:

4.1 Integrity:
The condition of the whole voting system to be unified should be always

guaranteed [4]. So the system ensures that no vote was changed under any

case in the whole election process. No trust will be given to the system if

it does not have integrity.

4.2 Eligibility:
In the voting process just the voters who are eligible can cast a vote .

Each voter can cast his vote once and no possibility for multiple times of

voting.

4.3 Availability:
One of main properties of a voting system is the ability of this system to

remain available in real time while the process of elections is going on. The

voters should have the ability to check the results by using their physical

devices.

The system should be able to handle large workload because some voters

will cast their votes in simulate way.

4.4 Fairness:
Authority and fairness is an important specification of a voting system

because the system should not publish any partial results before the time

- 19 -

of voting ended in order not to give the voter the chance to modify his

decision depending on voting partial results.

4.5 The Anonymity with Secrecy of the Election:
The voter identity should not been known except of the voter himself. So

no one can access the voter identity under any condition.

4.6 Correctness
The final results of the process of elections must be counted in a correct

matter in order to be published.

4.7 Verifying Results:
The step of verifying the results comes after finishing the process of

tallying and the verification process starts once the results were published.

The System must introduce a details of verifying the election results.

4.8 Robustness:
The voting system should be able to handle ineligible votes and the votes

which cause faults. Some Attackers could participate in casting malicious

votes and ballots so the system should be able to recognize these attacks

and cancel their effect on the voting process or any server attacks.

4.9 The Concern of Coercion:
One of the challenges in a voting system is the possibility to ensure that the

user cast his voice without giving his vote to a specific candidate by force

even not to let the user to show his vote to anyone else in order not to be

able to proof that he or she has voted for specific candidate and get paid

for this choice from third party. So the system should be resistant to any

coercion [6].

- 20 -

Chapter 5

The Cryptographic in Voting Systems
Cryptographic primitives will be described in this chapter in order to get
more into cryptographic sphere in voting systems.

5.1 Cryptography Public Key
This cryptographic primitive is to manage the voter privacy. The
technique works like following:

Each voter has two keys, one is “public key” and the other is “private
key”.

Every voter uses the “public key”, which is in the election's “public key”,
to encrypt his vote or to encrypt the ballot and this “public key” is
published publicly then the voter will use the “private key” to sign the
ballot which is already encrypted by the “public key” [9].

 Figure 5.1 singing and encrypting the voting ballot

In order to guarantee the voter anonymity, Mix net technique should be
used [10]. One important point while using public key cryptography and
RSA, the choosing must be made for safe and secure algorithms to be
used in random numbers generator [11] [12].

- 21 -

5.2 The Mix Net Property
The voting system can use this property in order to remove some layer of

the encryption and then mix and change the order of the votes and send the

result to the next node the votes after the votes has been encrypted [13]

[14].

To guarantee the voter anonymity there should exist at least one mix net
server [15].

Figure 5.2 The Mix net Property

- 22 -

This property includes one or more mixes which are connected to each
other with a specific order (a cascading one) so the outputs of one mix net
is the input for the next one to provide voting in anonymous matter [1].

5.3 Zero Knowledge Proof
Researchers at MIT in 1980 propose the use of zero knowledge,
Goldwasser, Rackoff and Micali [16]. Their research area was about
"interactive proof systems" which is explaining how two parties (prover
and verifier) can send and receive messages from the prover and verifier
in order to make the verifier agree that a specific mathematical statement
is totally true.

ZKP must have this properties:

x Completeness:

If the statement happens in honest way "true statement" then it will

work as it's expected to and the one who verify will be convinced

with this statement by the honest who proved that. A completeness

error can be exist because verification can happen with a probability

near to one but not totally equal to 1 so the error can be exist. The

same scenario can be with the public key encryption during the

decryption of the messages [17].

x ZK:

The verifier will not get any knowledge and no information will be

gathered except that the truth of the statement and this property

represent the actual meaning for the proof zero knowledge [17]. The

non-interactive ZKP is used by most of voting systems due to the

fact that there is no need for two active parts in the system so the

voter is just one part needed to verify different steps in the voting

system [19].

x Soundness:

- 23 -

If the statement has a false value then the one who prove is not able

to convince the one who verify even if there was a cheating from the

prover side [18].

The “non-interactive Zero knowledge proofs” are more recommended to

be used in the voting systems because in the non-interactive approach the

voter is able to process the verification for a lot of steps without the needs

of active part in the system and there is no need to take a lot of resources

for proofs just the initial one which is used for creating the proofs [19].

- 24 -

 Figure 5.3 NIZKP.

5.4 Digital Signatures
A “digital signature” is one of the critical “cryptographic primitives” in

order to build blocks. A “digital signature” is a signature in digital form.

There are two benefits of a digital signature.

One is the idea of having the distinct signature which can be verified by

another party and confirmed that it is a valid signature.

The second is to have the signature to sign different documents or

agreements with it and not to be modified by another party except the

owner of the signature.

The question is how to create a digital signature with the use of
cryptography?

There are three steps to consider:

1) Generate private and public keys, the owner will use the private key

as a secret key to create the signature and the public key as a

verification key that can be seen by anyone to verify the owner of

the signature.

2) Assigning a signature for a particular message that the sender wants

it to send in a secret way. A sequence of bits represents the signature

here [21].

3) Verifying the signature to be valid or not by using the “public key”

of the singer with the message which the signature is on it.

- 25 -

 Figure 4.4 Digital Signature API.

 Figure 4.5 Digital Signature mechanism.

Random algorithms can be used in the first two steps but not in the

Verification step because it's a deterministic one.

- 26 -

 Chapter 6

The proposal of a Voting System Architecture

6.1 Proposal Aim:
The main goal will be focusing on creating e-voting system with

"blockchain technology" to reflect that in the process of making decisions

such as:

- Approving a combination of two companies, or new investment.

- Choosing the right directors to the board.

- Approving equity compensation plans.

- Elections of Shareholders.

By using "blockchain technology" for voting issues, every voter will have

the ability to verify their own vote, to verify and check that the total votes

are accurate, all while remaining as anonymous as they desire. To make

the "blockchain technology" more secure, it needs more and more

participants.

6.2 Waves Platform:

Wave's platform is a blockchain system which is an entirely open source

in a decentralized manner to provide full functionalities to transfer, issue

and exchange new assets in different cryptocurrencies such as Bitcoin and

Ethereum and another cryptocurrency. The system is auditable,

decentralized and transparent. There is no need to download the whole

blockchain which gives a high accessibility.
Current Waves block maximum size is 100 transactions and a new block

can be generated every minute so the speed is up to 100 transactions per

minute. The Block speed is one minute and every block can handle around

- 27 -

one hundred transaction and also the transactions fees are possible be paid

as tokens.

By this specifications, the system will be able to expand from small-scale

voting to large-scale voting.

6.3 System challenges and requirements:
a) Voters Privacy and how it is possible for every voter to have the

ability to verify and check if his/her vote was casted and counted in

a correct way or not.

b) Remove any indication of the voter’s identity if it's necessary.

c) Unfinished voting results should not be allowed in the system

because this can affect the process of voting due to the fact that a

voter will vote to the candidate or to choose the answer which has

more votes than others.

d) Decreasing threats and ensure that the voter is always voting in safe

way without any external environment which can affect the voter

decision.

e) Blank votes cannot be used to elect a candidate or make a decision.

f) Using redundant servers in different locations in order to distribute

the voting system. So if we have a big number of nodes which are

actively participate in the network, any attacker will need a big

amount of these malicious nodes to be able to get an impact on

blockchain integrity.

g) Choosing algorithms which provide safety in the case of random

number generation.

- 28 -

6.4 The main elements of a blockchain-based voting system:
1. Registration

Each party (which wants to create a poll) and each eligible voter will need

their own private wave's wallet. So the voter will create his/her own wallet

and the system will verify their eligibility.

2. Creating the Issue or the matter to be voted for

Set up the election process details and define the main area of voting.

Addresses of each poll and each specific answer will be available publicly.

3. Voting transactions Process

The voter can't vote without spending a specific amount of waves, assets

or currency (will be decided depending on the poll creation requirements).

So the total amount of waves, assets or currency of each answer will be the

final results.

4. Verifiability

Verification can be done by checking the identification number of the

voter, the password and the list of voters.

Each user can see if the vote has arrived in the candidate’s wallet. Also, all

other transactions can be verified this way to reconstruct the results of the

election.

Each candidate specifies a Bitcoin/Wave address. Voters then cast by

sending a payment to the selected candidate. Any try to break the voting

rules (e.g., one vote per voter) can be noticed by inspecting the blockchain,

and the tally is visible by inspecting the candidate’s received payments.

Votes should be packed into packages with a defined maximum size and

verified with a specific hash. This hash must begin with a certain number

of zeros, which depends on the number of participants in the network.

- 29 -

6.5 Replace the coin with a vote:
In a PoS "proof-of-stake" system, the holding tokens (in this case waves)

will be alternative of hashing power in the mining process.

There are many possible Ways to create a voting system based on

blockchain technology.

The simplest one is instead of transferring tokens between accounts, the

tokens which transferred in the network can be used to describe individual

votes by transferring them into ballots.

The system can have voting right assets and voting token assets for each

shareholder. A voter will be able to spend voting tokens to cast their votes

on each meeting agenda item if the voter also own the voting right asset.

6.6 How to handle double voting:
Before the transactions are added to the blockchain, the inputs of the

transactions are checked and it is ensured that these inputs have not been

voted before to prevent double voting. The protocol’s design defines that

the longest chain is the “true” chain. Smaller chains are ignored. Combined

with a timestamp and the proof-of-stake, this prevents double voting.

6.7 How does the voting system works
The waves voting system will enable the creation of a voting question
“Poll” for any valid account with the range of one voting question to one
hundred answers. A condition can be added to the system in order to
make the user eligible to participate in the voting system if each user have
a minimum amount of waves, currency or asset. For each answer, there
will be an integer number between specific range values and each answer
will have a specific weight depending on different models of the voting
process “account model, account model with balance, asset model with
balance and the currency model with balance”. All of this will be during
the creation of the voting question “Poll”. After that the result will be by
counted as the sum of different weights for all voters multiplied with the
integer value for the answers which is chosen when the user cast his/her
vote. The votes are saved as attachments and after the ending of elections,

- 30 -

the votes will be removed from the blockchain and only remaining is the
results.

6.8 Voting and creating Poll as Transactions:
x Every “poll transaction or “vote transaction” will need to perform

just one operation and then this transaction will be stored on the p2p

network in a permanent matter in the block.

x The fees of every “poll transaction” or “vote transaction” are the

main and prime technique where the waves are reprocessed back into

the p2p network. So each “poll transaction or “vote transaction” will

require a 1 wave as minimum fee.

x The transaction cannot be confirmed unless the transaction is totally

added into a block which has a valid status.

x There is a parameter called “deadline parameter” which has a

specific time in minutes which represent the time when the

transaction has been totally submitted into the p2p network.

6.9 Transactions Types:
All “poll transaction or “vote transaction” have different parameters :

x A “private key” which represent the voter account

x The specific value of transaction which is “transaction fee”.

x A specific time which represent the deadline of making a new

voting transaction.

x Optional choice to a referenced transaction.

Waves voting system will be represented as a new transaction type which

accept attachment as an input parameter and different parameters

depending on the voting area with different processing methods such as”

x The creation of a voting question “poll creation”.

x The casting of the vote.

- 31 -

If the user account who is participating in the voting process has enough

funds for ”the creation of poll " or "vote casting":

(a) When the new vote/poll transaction is initialized, the every “poll

transaction” or “vote transaction” Id will be generated with

including the different parameters.

(b) Using the voter “private key” to sign the transaction.

(c) Processing the “vote transaction” by putting the encrypted

transaction within the p2p network.

(d) Broadcasting the “poll transaction” or “vote transaction” to all p2p

nodes in the network.

(e) The server is responding with the code of the total results of election,

so in case the creation of “voting transaction” was successful then

the code will be the “voting transaction ID”, otherwise it will be an

message which represent the error and fail happens while checking

the parameters of the transaction.

6.10 Encryption:
As encryption criteria, waves voting system will encrypt the transactions

which are included in the voting procedure by using “Elliptic-Curve

Korean Certificate based Digital Signature Algorithm (EC-KCDSA)”.

- 32 -

6.11 Voter use case diagram:

6.12 Sequence diagram for the voting system:

Login Process:

- 33 -

Voting process:

Results process:

- 34 -

Chapter 7

Conclusion and Future Work
In this research, various electronic voting systems were studied and a new

architecture was proposed through the use of proof of stake protocol which

gives the possibility to have secure system without depending on massive

computational power as in proof of work protocol which is used by

Ethereum blockchain to find the hashes. The process of designing the

system is handling the security issues that are needed in real voting

systems.

The proposal used waves platform as a blockchain system to bring the ideas

of an electronic voting system which use PoS to the real world.

This will consider the use of smartphones and small devices to take part in

the election process in the peer to peer network to ensure the complete

integrity of the whole blockchain. This can be reached in an easy way by

allowing the smartphones to be online in order to be a full node in the

voting peer to peer network which is a blockchain system.

As future work, the proposed architecture will be implemented on wave

lite client to provide a real voting product which at the beginning will focus

on shareholders elections and then go further for national election over

waves blockchain. To create this type of large voting system, a dedicated

blockchain will be responsible only for handling the voting process with

big block size to handle a lot of transaction on the chain and centralized

maintenance.

- 35 -

Appendix:
package scorex.transaction.Data

import com.google.common.base.Charsets
import com.google.common.primitives.{Bytes, Longs}
import play.api.libs.json.{JsObject, Json}
import scorex.account.{PrivateKeyAccount, PublicKeyAccount}
import scorex.crypto.EllipticCurveImpl
import scorex.crypto.EllipticCurveImpl.SignatureLength
import scorex.crypto.encode.Base58
import scorex.serialization.BytesSerializable
import scorex.transaction._
import scorex.transaction.TransactionParser._

import scala.util.{Failure, Success, Try}
import scala.util.Try

/**
 * Created by DN on 30/05/2017.
 */
sealed trait DataTransaction extends SignedTransaction
{
 def data: Array[Byte]
 def fee: Long
 def dataLength: Int
}

object DataTransaction
{
 private case class DataTransactionImpl(sender: PublicKeyAccount,
 data: Array[Byte],
 dataLength: Long,
 fee: Long,
 timestamp:Long,
 signature: Array[Byte])
 extends DataTransaction
 {
 override val transactionType: TransactionType.Value =
TransactionType.DataTransaction
 override val assetFee: (Option[AssetId], Long) = (None, fee)

 lazy val toSign: Array[Byte] =
Bytes.concat(Array(transactionType.id.toByte),
 sender.publicKey,

BytesSerializable.arrayWithSize(data),
 Array(dataLength.toByte),
 Longs.toByteArray(fee),

Longs.toByteArray(timestamp))

 override lazy val json: JsObject = jsonBase() ++ Json.obj(
 "data" -> Base58.encode(data)
)

 override lazy val bytes: Array[Byte] =
Bytes.concat(Array(transactionType.id.toByte), signature, toSign)

 }

 val MaxDataSize = 140
 def parseTail(bytes: Array[Byte]): Try[DataTransaction] = Try {
 val signature = bytes.slice(0, SignatureLength)
 val txId = bytes(SignatureLength)
 require(txId == TransactionType.DataTransaction.id.toByte, s"Signed tx

- 36 -

id is not match")
 val sender =
PublicKeyAccount(bytes.slice(SignatureLength + 1, SignatureLength +
KeyLength + 1))
 val (dataLength, dataStart) = Array()
 val data = b
 val fee =
Longs.fromByteArray(bytes.slice(dataStart + 10, dataStart + 18))
 val timestamp = Longs.fromByteArray(bytes.slice(data
+ 18, data + 26))
 DataTransaction.create(sender,dataLength,data, fee, timestamp,
signature)
 .fold(left => Failure(new Exception(left.toString)), right =>
Success(right))
 }.flatten

 private def createUnverified(sender: PublicKeyAccount,
 data: Array[Byte],
 dataLength: Long,
 fee: Long,
 timestamp:Long,
 signature: Option[Array[Byte]] = None) =

 if (dataLength > MaxDataSize) {
 Left(ValidationError.TooBigArray)
 } else if (fee <= 0) {
 Left(ValidationError.InsufficientFee)
 } else {
 Right(DataTransactionImpl(sender, data, dataLength, fee, timestamp,
signature.orNull))
 }

 def create(sender: PublicKeyAccount,
 data: Array[Byte],
 dataLength: Long,
 fee: Long,
 timestamp:Long,
 signature: Array[Byte]): Either[ValidationError,
DataTransaction] =
 createUnverified(sender, data, dataLength , fee, timestamp,
Some(signature))
 .right.flatMap(SignedTransaction.verify)

 def create(sender: PrivateKeyAccount,
 data: Array[Byte],
 dataLength: Long,
 fee: Long,
 timestamp: Long): Either[ValidationError, DataTransaction] =
 createUnverified(sender, data, dataLength , fee, timestamp).right.map {
unverified =>
 unverified.copy(signature = EllipticCurveImpl.sign(sender,
unverified.toSign))
 }

}

- 37 -

package scorex.transaction.assets

import com.google.common.base.Charsets
import com.google.common.primitives.{Bytes, Longs}
import play.api.libs.json.{JsObject, Json}
import scorex.account.{Account, PrivateKeyAccount, PublicKeyAccount}
import scorex.crypto.EllipticCurveImpl
import scorex.crypto.encode.Base58
import scorex.serialization.{BytesSerializable, Deser}
import scorex.transaction.TransactionParser._
import scorex.transaction.ValidationError
import scorex.transaction._

import scala.util.{Failure, Success, Try}

sealed trait IssueTransaction extends AssetIssuance {
 def name: Array[Byte]
 def description: Array[Byte]
 def decimals: Byte
 def fee: Long
}

object IssueTransaction {

 private case class IssueTransactionImpl(sender: PublicKeyAccount,
 name: Array[Byte],
 description: Array[Byte],
 quantity: Long,
 decimals: Byte,
 reissuable: Boolean,
 fee: Long,
 timestamp: Long,
 signature: Array[Byte])
 extends IssueTransaction {

 override val assetFee: (Option[AssetId], Long) = (None, fee)
 override val transactionType: TransactionType.Value =
TransactionType.IssueTransaction

 override lazy val assetId = id

 lazy val toSign: Array[Byte] =
Bytes.concat(Array(transactionType.id.toByte),
 sender.publicKey,

BytesSerializable.arrayWithSize(name),

BytesSerializable.arrayWithSize(description),
 Longs.toByteArray(quantity),
 Array(decimals),
 if (reissuable) Array(1:
Byte) else Array(0: Byte),
 Longs.toByteArray(fee),

Longs.toByteArray(timestamp))

 override lazy val json: JsObject = jsonBase() ++ Json.obj(
 "assetId" -> Base58.encode(assetId),
 "name" -> new String(name, Charsets.UTF_8),
 "description" -> new String(description, Charsets.UTF_8),
 "quantity" -> quantity,
 "decimals" -> decimals,
 "reissuable" -> reissuable
)

 override lazy val bytes: Array[Byte] =
Bytes.concat(Array(transactionType.id.toByte), signature, toSign)

- 38 -

 }

 val MaxDescriptionLength = 1000
 val MaxAssetNameLength = 16
 val MinAssetNameLength = 4
 val MaxDecimals = 8

 def parseTail(bytes: Array[Byte]): Try[IssueTransaction] = Try {
 val signature = bytes.slice(0, SignatureLength)
 val txId = bytes(SignatureLength)
 require(txId == TransactionType.IssueTransaction.id.toByte, s"Signed tx
id is not match")
 val sender =
PublicKeyAccount(bytes.slice(SignatureLength + 1, SignatureLength +
KeyLength + 1))
 val (assetName, descriptionStart) = Deser.parseArraySize(bytes,
SignatureLength + KeyLength + 1)
 val (description, quantityStart) = Deser.parseArraySize(bytes,
descriptionStart)
 val quantity =
Longs.fromByteArray(bytes.slice(quantityStart, quantityStart + 8))
 val decimals = bytes.slice(quantityStart + 8,
quantityStart + 9).head
 val reissuable = bytes.slice(quantityStart + 9,
quantityStart + 10).head == (1: Byte)
 val fee =
Longs.fromByteArray(bytes.slice(quantityStart + 10, quantityStart + 18))
 val timestamp =
Longs.fromByteArray(bytes.slice(quantityStart + 18, quantityStart + 26))
 IssueTransaction.create(sender, assetName, description, quantity,
decimals, reissuable, fee, timestamp, signature)
 .fold(left => Failure(new Exception(left.toString)), right =>
Success(right))
 }.flatten

 private def createUnverified(sender: PublicKeyAccount,
 name: Array[Byte],
 description: Array[Byte],
 quantity: Long,
 decimals: Byte,
 reissuable: Boolean,
 fee: Long,
 timestamp: Long,
 signature: Option[Array[Byte]] = None) =
 if (quantity <= 0) {
 Left(ValidationError.NegativeAmount)
 } else if (description.length > MaxDescriptionLength) {
 Left(ValidationError.TooBigArray)
 } else if (name.length < MinAssetNameLength || name.length >
MaxAssetNameLength) {
 Left(ValidationError.InvalidName)
 } else if (decimals < 0 || decimals > MaxDecimals) {
 Left(ValidationError.TooBigArray)
 } else if (fee <= 0) {
 Left(ValidationError.InsufficientFee)
 } else {
 Right(IssueTransactionImpl(sender, name, description, quantity,
decimals, reissuable, fee, timestamp, signature.orNull))
 }

 def create(sender: PublicKeyAccount,
 name: Array[Byte],
 description: Array[Byte],
 quantity: Long,
 decimals: Byte,
 reissuable: Boolean,
 fee: Long,
 timestamp: Long,

- 39 -

 signature: Array[Byte]): Either[ValidationError,
IssueTransaction] =
 createUnverified(sender, name, description, quantity, decimals,
reissuable, fee, timestamp, Some(signature))
 .right.flatMap(SignedTransaction.verify)

 def create(sender: PrivateKeyAccount,
 name: Array[Byte],
 description: Array[Byte],
 quantity: Long,
 decimals: Byte,
 reissuable: Boolean,
 fee: Long,
 timestamp: Long): Either[ValidationError, IssueTransaction] =
 createUnverified(sender, name, description, quantity, decimals,
reissuable, fee, timestamp).right.map { unverified =>
 unverified.copy(signature = EllipticCurveImpl.sign(sender,
unverified.toSign))
 }
}

package scorex.transaction.assets

import scala.util.{Failure, Success, Try}
import com.google.common.primitives.{Bytes, Longs}
import com.wavesplatform.utils.base58Length
import play.api.libs.json.{JsObject, Json}
import scorex.account.{Account, AccountOrAlias, PrivateKeyAccount,
PublicKeyAccount}
import scorex.crypto.EllipticCurveImpl
import scorex.crypto.encode.Base58
import scorex.serialization.{BytesSerializable, Deser}
import scorex.transaction.TransactionParser._
import scorex.transaction.{ValidationError, _}

sealed trait TransferTransaction extends SignedTransaction {
 def assetId: Option[AssetId]

 def recipient: AccountOrAlias

 def amount: Long

 def feeAssetId: Option[AssetId]

 def fee: Long

 def attachment: Array[Byte]
}

object TransferTransaction {

 val MaxAttachmentSize = 140
 val MaxAttachmentStringSize = base58Length(MaxAttachmentSize)

 private case class TransferTransactionImpl(assetId: Option[AssetId],
 sender: PublicKeyAccount,
 recipient: AccountOrAlias,

- 40 -

 amount: Long,
 timestamp: Long,
 feeAssetId: Option[AssetId],
 fee: Long,
 attachment: Array[Byte],
 signature: Array[Byte])
 extends TransferTransaction {
 override val transactionType: TransactionType.Value =
TransactionType.TransferTransaction

 override val assetFee: (Option[AssetId], Long) = (feeAssetId, fee)

 lazy val toSign: Array[Byte] = {
 val timestampBytes = Longs.toByteArray(timestamp)
 val assetIdBytes = assetId.map(a => (1: Byte) +: a).getOrElse(Array(0:
Byte))
 val amountBytes = Longs.toByteArray(amount)
 val feeAssetIdBytes = feeAssetId.map(a => (1: Byte) +:
a).getOrElse(Array(0: Byte))
 val feeBytes = Longs.toByteArray(fee)

 Bytes.concat(Array(transactionType.id.toByte),
 sender.publicKey,
 assetIdBytes,
 feeAssetIdBytes,
 timestampBytes,
 amountBytes,
 feeBytes,
 recipient.bytes,
 BytesSerializable.arrayWithSize(attachment))
 }

 override lazy val json: JsObject = jsonBase() ++ Json.obj(
 "recipient" -> recipient.stringRepr,
 "assetId" -> assetId.map(Base58.encode),
 "amount" -> amount,
 "feeAsset" -> feeAssetId.map(Base58.encode),
 "attachment" -> Base58.encode(attachment)
)

 override lazy val bytes: Array[Byte] =
Bytes.concat(Array(transactionType.id.toByte), signature, toSign)

 }

 def parseTail(bytes: Array[Byte]): Try[TransferTransaction] = Try {
 import EllipticCurveImpl._

 val signature = bytes.slice(0, SignatureLength)
 val txId = bytes(SignatureLength)
 require(txId == TransactionType.TransferTransaction.id.toByte, s"Signed
tx id is not match")
 val sender = PublicKeyAccount(bytes.slice(SignatureLength + 1,
SignatureLength + KeyLength + 1))
 val (assetIdOpt, s0) = Deser.parseOption(bytes, SignatureLength +
KeyLength + 1, AssetIdLength)
 val (feeAssetIdOpt, s1) = Deser.parseOption(bytes, s0, AssetIdLength)
 val timestamp = Longs.fromByteArray(bytes.slice(s1, s1 + 8))
 val amount = Longs.fromByteArray(bytes.slice(s1 + 8, s1 + 16))
 val feeAmount = Longs.fromByteArray(bytes.slice(s1 + 16, s1 + 24))

 (for {
 recRes <- AccountOrAlias.fromBytes(bytes, s1 + 24)
 (recipient, recipientEnd) = recRes
 (attachment, _) = Deser.parseArraySize(bytes, recipientEnd)
 tt <- TransferTransaction.create(assetIdOpt, sender, recipient,
amount, timestamp, feeAssetIdOpt, feeAmount, attachment, signature)

- 41 -

 } yield tt).fold(left => Failure(new Exception(left.toString)), right =>
Success(right))
 }.flatten

 private def createUnverified(assetId: Option[AssetId],
 sender: PublicKeyAccount,
 recipient: AccountOrAlias,
 amount: Long,
 timestamp: Long,
 feeAssetId: Option[AssetId],
 feeAmount: Long,
 attachment: Array[Byte],
 signature: Option[Array[Byte]] = None) = {
 if (attachment.length > TransferTransaction.MaxAttachmentSize) {
 Left(ValidationError.TooBigArray)
 } else if (amount <= 0) {
 Left(ValidationError.NegativeAmount) //CHECK IF AMOUNT IS POSITIVE
 } else if (Try(Math.addExact(amount, feeAmount)).isFailure) {
 Left(ValidationError.OverflowError) // CHECK THAT fee+amount won't
overflow Long
 } else if (feeAmount <= 0) {
 Left(ValidationError.InsufficientFee)
 } else {
 Right(TransferTransactionImpl(assetId, sender, recipient, amount,
timestamp, feeAssetId, feeAmount, attachment, signature.orNull))
 }
 }

 def create(assetId: Option[AssetId],
 sender: PublicKeyAccount,
 recipient: AccountOrAlias,
 amount: Long,
 timestamp: Long,
 feeAssetId: Option[AssetId],
 feeAmount: Long,
 attachment: Array[Byte],
 signature: Array[Byte]): Either[ValidationError,
TransferTransaction] = {
 createUnverified(assetId, sender, recipient, amount, timestamp,
feeAssetId, feeAmount, attachment, Some(signature))
 .right.flatMap(SignedTransaction.verify)
 }

 def create(assetId: Option[AssetId],
 sender: PrivateKeyAccount,
 recipient: AccountOrAlias,
 amount: Long,
 timestamp: Long,
 feeAssetId: Option[AssetId],
 feeAmount: Long,
 attachment: Array[Byte]): Either[ValidationError,
TransferTransaction] = {
 createUnverified(assetId, sender, recipient, amount, timestamp,
feeAssetId, feeAmount, attachment).right.map { unsigned =>
 unsigned.copy(signature = EllipticCurveImpl.sign(sender,
unsigned.toSign))
 }
 }
}

- 42 -

References:

[1] Ali, Syed Taha, and Judy Murray. "An Overview of End-to-End

Verifiable Voting Systems." Real-World Electronic Voting: Design,

Analysis and Deployment. CRC Press, 2016. 171-218.

[2] Chaum, David L. "Untraceable electronic mail, return addresses, and

digital pseudonyms." Communications of the ACM 24.2 (1981): 84-90.

[3] Herschberg, Mark A. Secure electronic voting over the world wide web.

Diss. Massachusetts Institute of Technology, 1997.

[4] T. Kohno, A. Stubblefield, A.D. Rubin, and Wallach D.S. Analysis of

an electronic voting system. In IEEE Symposium on Security and Privacy,

pages 27–42, 2004.

[5] Neumann, P. (1993), “Security Criteria for Electronic Voting”, 16th

Nation al Computer Security Conference, Baltimore.

[6] OKAMOTO, Tatsuaki: Receipt-free electronic voting schemes for

large scale elections. In: Security Protocols, 5th International Workshop

1361 (1998), 25–35.

[7] Stephan Neumann, Jurlind Budurushi, and Melanie Volkamer.

Analysis of security

and cryptographic approaches to provide secret and verifiable electronic

voting. In Design, Development, and Use of Secure Electronic Voting

Systems.

IGI Global, 2014.

[8] Hugo Jonker, Sjouke Mauw, and Jun Pang. Privacy and verifiability in

voting

systems: Methods, developments and trends. Computer Science Review,

10:1–

- 43 -

30, 2013.

[9] Rivest, Ronald L., Adi Shamir, and Leonard Adleman. "A method for

obtaining digital signatures and public-key cryptosystems."

Communications of the ACM 21.2 (1978): 120-126.

[10] Islam, Nazmul, et al. "A new e-voting scheme based on revised

simplified verifiable re-encryption mixnet." Networking, Systems and

Security (NSysS), 2017 International Conference on. IEEE, 2017.

[11] Jain, Meenal, and Manoj Singh. "Identity Based Secure RSA

Encryption System." Proceedings of International Conference on

Communication and Networks. Springer, Singapore, 2017.

[12] Chugunkov, Ilya V., et al. "Classification of pseudo-random number

generators applied to information security." Young Researchers in

Electrical and Electronic Engineering (EIConRus), 2017 IEEE

Conference of Russian. IEEE, 2017.

[13] Pereira, Olivier, and Ronald L. Rivest. "Marked Mix-Nets."

[14] Wang, King-Hang, et al. "A Review of Contemporary E-voting:

Requirements, Technology, Systems and Usability."

[15] Schneider, Alexander, Christian Meter, and Philipp Hagemeister.

"Survey on Remote Electronic Voting." arXiv preprint arXiv:1702.02798

(2017).

[16] Goldwasser, Shafi, Silvio Micali, and Charles Rackoff. "The

knowledge complexity of interactive proof systems." SIAM Journal on

computing 18.1 (1989): 186-208.

[17] Ewanick, Bill. "Zero Knowledge Proof." (2011).

- 44 -

[18] Bootle, Jonathan, et al. "Efficient Zero-Knowledge Proof Systems."

Foundations of Security Analysis and Design VIII. Springer International

Publishing, 2016. 1-31.

[19] Meter, Christian. "Design of Distributed Voting Systems." arXiv

preprint arXiv:1702.02566 (2017).

[20] http://www.economist.com/whichmba/mba-case-

studies/cybersecurity-

case-study-competition-2016.

[21] Parkinson, Sean F., and Eric A. Young. "Blinding function in elliptic

curve cryptography." U.S. Patent No. 9,584,320. 28 Feb. 2017.

[22] McCorry, Patrick, Siamak F. Shahandashti, and Feng Hao. "A Smart

Contract for Boardroom Voting with Maximum Voter Privacy."

[23] Feng Hao, Peter YA Ryan, and Piotr Zielinski. Anonymous voting

by two-round public discussion. IET Information Security, 4(2):62–

67, 2010.

[24] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and

Charalampos Papamanthou. Hawk: The Blockchain Model of

Cryptography and Privacy-Preserving Smart Contracts.

[25] Nan Yang and Jeremy Clark : Practical Governmental Voting with

Unconditional Integrity and Privacy.

[26] D Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[27] Michael R Clarkson, Stephen Chong, and Andrew C Myers. Civitas:

Toward a secure voting system. In IEEE Symposium on Security

and Privacy, pages 354–368. IEEE, 2008.

- 45 -

[28] Feng Hao, Matthew N Kreeger, Brian Randell, Dylan Clarke,

Siamak F Shahandashti, and Peter Hyun-Jeen Lee. Every vote

counts: Ensuring integrity in large-scale electronic voting. The

USENIX Journal of Election Technology and Systems, 1, 2014.

[29] Aggelos Kiayias, Michael Korman, and David Walluck. An internet

voting system supporting user privacy. In Computer Security

Applications Conference, 2006. ACSAC’06. 22nd Annual, pages 165–

174. IEEE, 2006.

[30] Ben Adida, Olivier De Marneffe, Olivier Pereira, and Jean-Jacques

Quisquater. Electing a university president using open-audit

voting: Analysis of real-world use of helios. In Proceedings of

the Electronic Voting Technology Workshop/Workshop on Trustworthy

Elections (EVT/WOTE). USENIX Association, 2009.

[31] C Andrew Neff. Practical high certainty intent verification for

encrypted votes, 2004.

[32] Peter YA Ryan, David Bismark, James Heather, Steve Schneider,

and Zhe Xia. Prˆet `a voter: a voter-verifiable voting system. IEEE

transactions on information forensics and security, 4(4):662–673, 2009.

[33] Siamak F Shahandashti and Feng Hao. DRE-ip: a verifiable evoting

scheme without tallying authorities. In European Symposium

on Research in Computer Security, pages 223–240. Springer, 2016.

[34] David Chaum. Secret-ballot receipts: True voter-verifiable elections.

IEEE security & privacy, 2(1):38–47, 2004.

[35] Susan Bell, Josh Benaloh, Michael D. Byrne, Dana DeBeauvoir,

Bryce Eakin, Gail Fisher, Philip Kortum, Neal McBurnett, Julian

Montoya, Michelle Parker, Olivier Pereira, Philip B. Stark, Dan S.

Wallach, and Michael Winn. STAR-Vote: A secure, transparent,

auditable, and reliable voting system. USENIX Journal of Election

Technology & Systems, 1(1):18–37, 2013.

- 46 -

[36] David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex,

Stefan Popoveniuc, Ronald L Rivest, Peter YA Ryan, Emily Shen,

and Alan T Sherman. Scantegrity II: End-to-End Verifiability for

Optical Scan Election Systems using Invisible Ink Confirmation

Codes. EVT, 8:1–13, 2008.

[37] Jens Groth. Efficient maximal privacy in boardroom voting and

anonymous broadcast. In International Conference on Financial

Cryptography, pages 90–104. Springer, 2004.

[38] Aggelos Kiayias and Moti Yung. Self-tallying elections and perfect

ballot secrecy. In International Workshop on Public Key Cryptography,

pages 141–158. Springer, 2002.

