Fair Block Delay Distribution In Proof-of-Stake.

Antonina Begicheva and Alexey Kofman

Waves Platform, Moscow, Russia, abegicheva@wavesplatform.com

Abstract. The idea of Proof-of-Stake is as follows: the choice of account
that has the right to generate the next block is based on the number
of coins in the account. We describe disadvantages of existing Proof-
of-Stake consensus algorithm from Nxt blockchain, used by Waves and
possible adjustments of this algorithm.

The current formula allows very large miners to forge a not proportionally
greater number of blocks, which is not fair. We suggest some adjustments
to the formula to make the block delay distribution depending on the
balance fair. Also, we make blockchain more protected from multibranch
mining attack, which is a weak point of simple Proof-of-Stake algorithms.

Keywords: blockchain, waves, proof of stake, forging, mining, base tar-
get

1 Introduction

From the very beginning up until now Waves has used a ”pure” Proof of Stake
(PoS) model, as proposed by Nxt [1]. In this model, the choice of account that has
the right to generate the next block and receive the corresponding transaction
fees is based on the number of tokens in the account. The more tokens that are
held in the account, the greater the chance that account will earn the right to
generate a block.

In Waves, we are convinced that each participant in the blockchain should
participate in the block generation process proportionally his stake. Since we
cannot ignore the fact that in Nxt’s algorithm this condition is not fulfilled, we
have decided to correct the PoS formula. Besides, it can be noted that the current
algorithm encourages multi-branching strategies, and this is also a critical issue
to be improved. At the moment we do not have the goal of completely changing
the algorithm, since there is no need; we simply want to make some adjustments.

In this article, we discuss changes in the forging algorithm of Waves. The aim
of the changes to the formula is to correct it so that the process of generating
blocks becomes fairer and less vulnerable to multi-branching attacks.

Section 2 describes the current Proof of Stake algorithm and highlights the
problems with it. The enhancements in Nxt’s PoS model and how to adjust it
are proposed in Section 3. Experiments with some Proof of Stake attacks and

improvements to the algorithm required to address them are discussed in Section
4.

2 Antonina Begicheva and Alexey Kofman

2 Background

2.1 Proof of Stake (PoS)

Each block on the chain has generating signature that depends on the hash of
the previous block’s generating signature and the public key of the validator’s
account. Nxt’s implementation of PoS is pseudo-random i.e. if we know the
validator of the previous generated block and the balances of all accounts on
the blockchain, we can predict who will generate next block. This is possible
due to a deterministic computation of a block’s generating signature, which can
be obtained by SHA256 hashing of current block’s generating signature and the
account’s public key. The first 8 bytes of the resulting hash is converted to a
number, referred to as the account hit.

The base target value aims to adjust the average block generation time to
match the desired value (for example, 60 seconds in Nxt). The reason for having
the base target variable is that not all accounts are online all the time. Sometimes
the first account in the queue will not produce a block since it is offline, or its
total mining balance is changing, and we need to ensure that the generation time
for blocks remains approximately the same. The base target helps to change the
complexity of mining for this purpose. The calculation of the base target from
[1] is following:
min(S, Rmaz)

60
60 — max (S, Rmin)

60))

where R, = 67 - max ratio by which the target is decreased when block time
is larger than 60 seconds,R,,;, = 53 - min ratio by which the target is increased
when block time is smaller than 60 seconds, v = 0.64, S is average block time
for the last 3 blocks, T}, - previous base target and T3 - calculated base target.

If two or more accounts create a block at the same time, in this case, there
is a collision, and the less frequently such cases occur, the better it is for the
network.

Our current implementation of the Leased Proof-of-Stake (LPoS) Protocol is
based on Nxt’s mechanism, which can be described with this formula:

(S > 60— T, =T, *)A

(S<60—=>T,=T,— T,

Xn
Ti =)
(bi : An)

where T; is block generation time for i-th account, X, is a generating signa-
ture or hit, b; is the proportion of total forging power that the i-th account has,
which depends on the account balance, A,, is baseTarget

For an in-depth analysis of the mathematics and probabilities related to Nxt
block forging, see [2], where some disadvantages and bottlenecks of Nxt’s PoS
system are described. In the article, there is information about such problems as
the unfair distribution of the possibility of generating blocks, insufficient resis-
tance to attacks such as Nothing-at-Stake, and the ”branching process attack”.

Fair Block Delay Distribution In Proof-of-Stake. 3

0.08

0.06
2
& 004
=
2
o

: |“““

o ‘“‘l||||IIIIIIIII|I“|IIIII--..
0 100 200 300
block delay

Fig. 1: Current block delay distribution in seconds

The first disadvantage of the current version of PoS is an unfair probability
of block generation. An example of such dishonest distribution is shown on the
bar chart from Fig. 2: the ”big guy” with the most coins can create blocks 50%
more often than he should, reducing the ability of smaller participants to mine.
As we can see in Fig. 2 the big guy also gets most of the fees and this is also
unfair. The Fig. 1 demonstrates the current blocks delay distribution.

The total rewards received as a result of block generation is the sum of the
transaction fees located within the block. The current PoS implementation has
a distribution of fees between participants, which has an even greater imbalance
between large and small participants (3). This is because the average time of the
previous block for a large miner is greater than for a small one.

As can be seen from the chart, fee distribution has a drastic drop-off after
the biggest miner and the imbalance between a large balance’s participants and
small participants increases.

2.2 Attacks on Proof of Stake

The main vector for PoS being attacked is the fact that generating a block is no
more than generating one signature. The validators have the incentive to work
on multiple forks since there is no restriction to do this. Now we need to define
what it means for one chain to be “better” than another.

For example, in the Nothing-at-Stake” attack [3] validators could generate
conflicting blocks on possible forks with nothing at stake for double-spending and
reducing the efficiency of the system. Since the eligibility proof is deterministic

4 Antonina Begicheva and Alexey Kofman

150 m Share Blocks = = Classic fee per stake Ng fee per stake = Stake share

100

percentages

50

0.44%
0.45%
0.48%
0.52%
0.53%
0.54%
0.56%
0.60%
0.61%
0.65%
0.67%
0.76%
0.83%
98%
12%
20%
30%
39%
50%
57%
7%
212%
2.65%
5.61%
6.06%
6.95%
27.36%

stake share

Fig. 2: Current fee distribution per balances

for each account, one can easily predict which block will be generated next.
A detailed analysis of a multibranch strategy on the basic Nxt algorithm is
presented in [4-7]. These articles show that the multibranch strategy is more
efficient in terms of the number of generated blocks and the rewarded fees. If all
accounts are indifferent and do not try to detect the attack, the attacker always
wins with a small forging balance.

A similar attack is Stake-Bleeding [8]. Attackers launch a long-range attack
by creating a local copy of the current blockchain along with maintaining an
alternative blockchain that is initially empty and is hidden from honest partici-
pants. The attackers that produce the blocks receive the fees as a reward, and a
large number of the transaction fees in the private blockchain will be collected
by the malicious coalition. If the blockchain system has run for a substantial pe-
riod of time, the transaction fees will turn the attacking minority coalition into
a majority that will be able to advance the private blockchain at a speed faster
than the honestly-maintained public blockchain. Thus the attacking coalition
could rewrite the history of transactions.

In [9] Ethereum presents Slasher, an algorithm which solves this problem.
Slasher has harshly punitive nature, and its key feature is that the signing priv-
ilege is based on the block mined two thousand blocks ago. Thus, in the event of
a fork, a miner that gets lucky in one chain will also get lucky in the other, com-
pletely eliminating the probabilistic dual-mining attack. The penalty of block
reward loss ensures that every node will take care to sign only one block at each
block number.

In [10] two PoS protocols are proposed that are secure against both the
Nothing-at-Stake attack and the long-range attack. The idea of both protocols
is to restrict the validators to generating at most one block at a given block

Fair Block Delay Distribution In Proof-of-Stake. 5

height. The first protocol is a software-based solution with an enhanced signa-
ture scheme which binds the randomness of the signature to the block height
value. The second protocol is a hardware-based solution which relies on tamper-
resistant hardware and a trusted application for block generation, which records
information about the last issued blocks and prevents the validator from repeat-
edly generating an already-generated block.

2.3 Requirements for Improvement

Based on the shortcomings and vulnerabilities of the current implementation of
the protocol described above, we propose the following criteria for successfully
changing the forging formula:

1. All the chain’s participants have a ”fair” probability of creating a block, i.e.
probability proportional to their stake.

2. The number of collisions decreases, or at least does not increase.

3. Average block generation time is one minute and there are no blocks for
which generation time is much greater than this average.

4. Exposure to specific Proof of Stake attacks, e.g. multibranch forging, is de-
creased.

3 Adjustment of PoS Formula

3.1 Fairness

As shown in [2] unfairness is an essential consequence of simple Nxt formula,
which is based Uniform distribution of random value. Authors of this paper also
compared the existing formula with a formula based on Exponential distribution,
which gives fair results: the probability of forging a block is proportional to
miner’s balance.

To fix our protocol, we correct the formula and use Exponential distribution
instead of Uniform. To do this we apply a logarithmic function to a random
value we use:

Xn
Ti =C- M
(bi : An)

Although average block time is one minute, delays between particular blocks
may vary from a few seconds to several minutes. Fig. 4 shows averaged blocks
distribution modeled with the new formula for 100 runs. As we can see, there
are a lot of blocks with a delay of fewer than 10 seconds and some blocks appear
after more than 400 seconds (in fact more than 600 seconds).

We would like to avoid having blocks with too high a delay, and ideally to
have all blocks appear in not more than 3-5 minutes. Also, it does not make
much sense to have blocks appearing a few seconds after the preceding block,
since our synchronization protocol (Waves NG) may lead to empty blocks when
the block delay is less than 5 seconds.

Antonina Begicheva and Alexey Kofman

= Stake share ~ Ngfee perstake = = Classic fee per stake ® Share blocks

125

75

=
&

sabejusalad

25

%8 LT
%98'GL
%9¥'C
%867
%Ly
%0LY
%0¥'Y
%V8T
%80T
%06'L
%09'L
%61
%CEL
%921
%Vl
%BLL
%BLL
%ElL
%601
%20l
%e0L
%660
%¥6'0
%680
%880
%980
%BLLO
%0L0
%590
%890
%090
%ESO
%ES0
%180
%180
%8¥0
%8¥'0
%8¥'0
%BLFO
%BLFO
%¥0
%EF'O
%EF'O
%Z¥0
%T¥0
%L¥0
%L¥0
%0¥'0
%8E0
%LED
%SED
%VED
%YED
%VED

stake share

Fair fee distribution per balances

Fig. 3

n.08

0.06

=
=
=1

FIUBINIDO

0.0z

[]_

400

300

200

o0

block delay

Initial block delay distribution in seconds

Fig.4

Fair Block Delay Distribution In Proof-of-Stake. 7

To fix distribution we apply one more logarithm function, specifically Log(1+
x), to the whole block delay formula. It changes only block delay but does not
affect miner selection, so the fairness property stays the same. Also, we can add
some constant, e.g. 5 seconds, to the resulting time to avoid overly frequent
blocks.

log X—)ji—z
T; = Tnin + C1 -log(1 = Cy - m)y

where T},;, = 5 is a constant for delay between blocks, C; = 70 - a constant
defining shape of delay distribution, and Cy = 5F17 is a constant to adjust base
target.

The shape of block delay distribution is now defined by C; value. If it’s too
low we’ll have almost all block delays of around 60 seconds, which leads to a
high number of collisions (two miners forging blocks at the same time). If it is
too high, we’ll have a lot of block delays close to T},;, and some blocks with
huge delays. In Fig. 5 you can see an averaged delay distribution with a balanced
value of Cy for 100 runs.

occurance

0.02

50 100 150 200

block delay, seconds

Fig. 5: Example of balanced block delay distribution in seconds

8 Antonina Begicheva and Alexey Kofman

3.2 Adjustment of Base Target calculation

In addition to the basic formula of the PoS, we also change the formula for
calculating the base target. We suggest the following formula:

T
(S > Rpaz — Tp = T, + max(1, 1—&)))/\

(S < Rpin&&Ty, > 1 — Ty, = T), — max(1, 1%70),
where R4, = 90 - max ratio by which the target is decreased when block time
is larger than 60 seconds,R,,;, = 30 - min ratio by which the target is increased
when block time is smaller than 60 seconds, S is average block time for the last
3 blocks, T}, - previous base target and Tj, - calculated base target.

We conducted an experiment aimed at monitoring the dynamics of the base
target value over 100,000 blocks. The line graphs from Fig. 6 and Fig. 7 show
the base target dynamics of the last 1,000 experimental blocks for the old and
new formulas, respectively, on a single run. We changed the network balance
for the last 500 blocks, reducing it by half. It can be seen that according to
the new formula, the base target value changes more smoothly with changes
in the network balance. The line corresponding to the behaviour of the base
target value obtained by the current formula fluctuates quite sharply on a fixed
balance, for the first 500 blocks. The formula proposed by us, on the other hand,
is resistant to the influence of arbitrary factors and adjusts gradually to changes.

The column charts from Fig. 6 and Fig. 7 show an average delay for every 100
blocks for the current and adjusted formula, averaged values for 500 experiments.
It is noticeable that the current formula instantly smoothes out the block delay
when changing the balance, allowing only a slight one-time increase. By contrast,
the adjusted formula prompts a significant climb that is normalised gradually.

The changes in base target formula can be beneficial in a case when a group
of miners with a small balance becomes forked from the main chain. With the
new formula, in such a case, the fork will lag behind the main chain not only in
the score but also in the height.

4 Security Improvement

As our modeling shows, the initial Nxt algorithm is exposed to the Nothing-at-
Stake attacks and some combinations of selfish mining and multibranch mining
with several accounts. The goal of our further improvement is to decrease ex-
posure to these kinds of attacks by making them considerably less effective. It’s
important that we improve our current PoS algorithm, rather than switch to
different, more complicated one.

In article [2], there is proof that the current algorithm with Uniform distribu-
tion is highly susceptible to attack when the attacker has at least 1/3 of all active
balances in the network, but that probability can be decreased by using Expo-
nential distribution to replace the old version. With exponential distribution,
the attacker must have at least 1/2 of all active balances.

base target

base target

Fair Block Delay Distribution In Proof-of-Stake.

== current base target [l current average delay

200 100

100 200 300 400 600 700 800 900

500
height

Fig. 6: Base target values and average delays using the current formulas.

== adjusted base tal B adjusted average del
100 / rget J ge delay 00

500
height

Fig. 7: Base target values and average delays using the adjusted formulas.

delay, seconds

delay, seconds

10 Antonina Begicheva and Alexey Kofman

height

X+ 1

®
®

1 L.
Tx+1 X+l

Tx

-
i ‘l!il’
x

Fig. 8

Let us consider following attack: the attacker controls a stake distributed
over N forging accounts. Their goal is to make alternative forks win over the
main one by overtaking it. Assume that the attacker creates a block after z.,
with delay ¢/, ; and someone create a block on z, with delay t,1 (8). The fork
can become a best chain only in a case when t, , + 1t < t,41 + t;, but we
know that ¢, > t,. Thus, to fork became the main chain, ¢, must be such as
t;Jrl +t/z — g <tgt1.

Every time an honest miner forges a new block based on the current best
block (parent-block), the attacker generates N hidden chains based on the same
parent block. These chains are not best, so they would not be accepted by the
network. At the next height, the attacker can extend these N chains with NV
new blocks each. This way it would have N? alternative chains consisting of
two blocks. In each chain the delay before the second block is calculated based
on a pseudo-random variable extracted from the first block and the forging
account of the second block. This means that in order to successfully overtake
the main chain an attacker needs to find a better chain out of N? chains based
on independent random variables. Although it has a lower mining balance the
chances of overtaking are rather high due to the large number of alternative
chains. The same applies to chains consisting of three blocks, where the number
of alternative chains is N3.

In order to reduce the effectiveness of such an attack we propose not to
use a pseudo-random variable from the preceding block, but to take it from an
older block. Let us say that the delay for the block at height (h) will be taken
from block (h — 100), but not from (h — 1)-th block. This will eliminate the
combinatorial effect. All the miner’s blocks at the same height have the same
delay no matter how many chains he tries to extend. Also, the probability of
overtaking the main chain by a fork decreases with the increasing height of the
main chain, since the attacker has a smaller balance.

Fair Block Delay Distribution In Proof-of-Stake. 11

Also, we conducted an experiment with this model. We take two miners as
attackers (the third and forth from our balances’ set), who want to create a fork
for various reasons, and run the simulation dozens of times. We launched the
old PoS and new PoS models using all the same balances. The results of one
of the simulations are presented in the Table 1, other simulations gave results
that did not differ substantially. In the results obtained by us, the attackers
received on average 70% more commission in the old PoS model and received
only 30% more fees in our proposed model. Also, the Table 2 also presents an
example of results that shows the number of forks using data from the Table
1: the number of forks and their length is reduced with the adjusted algorithm.

Table 1: Experimental data: 3-th and 4-th miners are attackers.

Miner Current PoS New PoS
Ne|Balance| Share |Blocks|Block share|Fee|Blocks| Block |Fee
share
1| 180 38 | 35007 35 89 37142 37 |96
2 76 16 | 14740 15 89 | 15851 | 16 |96
3 41 9 12714 13 155/10255| 10 |122
4 35 7 11015 11 158| 8797 9 |123
5 23 5 4544 5 91 | 4661 5 95
6 18 4 3499 3 89 | 3654 4 94
7 15 3 2907 3 89 | 3082 3 95
8 10 2 1893 2 87 | 2064 2 95
9 7 1 1399 1 92 | 1449 1 96
10 6 1 1144 1 86 | 1249 1 96
11 6 1 1138 1 86 | 1172 1 90
12 5 1 998 1 91 | 1047 1 96
13 5 1 997 1 91 | 1070 1 (100
14 5 1 986 1 91 | 1075 1 (100
15 4 1 774 1 88| 875 1 (102
16 4 1 763 1 88 | 845 1 98
17 4 1 807 1 93| 827 1 96
18 4 1 761 1 87| 841 1 97
19 3 1 607 1 90 | 590 1 91
20 3 1 607 1 95| 637 1 97
21 3 1 562 1 88 | 597 1 89
22 3 1 629 1 92| 576 1 87
23 3 1 538 1 83| 622 1 95
24 2 0 370 0 82| 399 0 89
25 2 0 391 0 91| 431 0 99
26 1 0 211 0 95| 193 0 93

12 Antonina Begicheva and Alexey Kofman

Table 2: Compare the number of forks for the current and adjusted algorithms.

Fork Length|Current PoS count|New PoS count

2 2508 2153
3 794 498
4 326 166
5 142 66
6 71 21
7 31 11
8 9 1
9 8 0
10 7 0
11 2 0
12 1 0
13 1 0
14 2 0

total 3902 2916

Therefore, this enhancement helps us reduce the probability of the attack
described. As for the selfish mining attack, where one forger does not publish and
distribute a valid solution to the rest of the network and continues to forge the
next block and so on, maintaining its lead, our enhancement allows the network
to resist the forger, thanks to the fair distribution of forging probability.

5 Conclusion

In this paper, we briefly described the shortcomings of the current PoS algorithm
used by Waves that we have decided to address: the unfairness and vulnerability
to specific attacks. At the moment, miners who have the largest share of stake
create more blocks than they are supposed to, and as a consequence gain much
more fees. Besides this, the current PoS implementation does not resist multi-
branching attacks well, such as Nothing-At-Stake.

We presented an improved PoS We algorithm that makes the choice of block
creator fair and reduces vulnerability to the described attacks, in accordance
with the shortcomings of the current algorithm. We analyzed the model of the
new algorithm for its correspondence to the stake share and the share of blocks,
and the results were positive. Also, the algorithm was analyzed for vulnerability
to attacks, and results obtained with the new model were better than with the
old one. The attacks’ results for the attacker were not so successful in terms of
the profits gained. The number of forks and their length decreased.

For future research, there are many other problems of PoS algorithm imple-
mentation, for example, that the forging algorithm has a pseudo-random choice
of the next block’s creator.

REFERENCES 13

References

1. Whitepaper:NXT 2018. https://nxtwiki.org/wiki/Whitepaper:Nxt.

2. Popov, S. A Probabilistic Analysis of the Nxt Forging Algorithm 2018.
http://www.docdroid.net/ecmz/forging0-5-2.pdf .html.

3. 2018. https://github.com/ethereum/wiki/wiki/Problems.

4. PoS forging algorithms: multi-strateqy forging and related security issues
2018. https://scribd.com/doc/256072839/PoS-forging-algorithms-
multi-strategy-forging-and-related-security-issues.

5. Multibranch forging 2018. https://scribd.com/doc/248208963/Multibranch-
forging.

6. Multibranch forging algorithms: tails switching effect and chain measures
2018. https://scribd . com/doc /256073121 /Multibranch- forging-
algorithms-tails-switching-effect-and-chain-measures.

7. Nzt forging algorithm: simulating approach 2018. https://scribd.com/
doc/243341106/Nxt-forging-algorithm-simulating-approach.

8. Gauzi, P., Kiayias, A. & Russell, A. Stake-Bleeding Attacks on Proof-of-Stake
Blockchains https://allquantor.at/blockchainbib/pdf/gazi2018stake.
pdf (2018).

9. Slasher: A Punitive Proof-of-Stake Algorithm - Ethereum Blog 2018. https:
//blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-
stake-algorithm/.

10. Li, W. in Data Privacy Management, Cryptocurrencies and Blockchain

Technology (eds Garcia-Alfaro, J., Navarro-Arribas, G., Hartenstein, H.
& Herrera-Joancomart, J.) 297-315 (Springer, 2018).

